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Strong evaporation of a C02-laser-heated water aerosol droplet into the outer atmosphere is considered The plots of 
the threshold values of laser radiation intensity and respective time of heating up to the droplet explosion vs the 
condensation coefficient have been obtained and analyzed The effect of laser radiation intensity, starting from the 
threshoM one, on the time of droplet heating up to its explosion and on the droplet mass at the instant of explosion 
was determined at different values of the condensation coefficient. 

Calculation of heating and evaporation of aerosol particles by laser radiation evokes great interest. However, for the 

most part diffusional, diffusional-convective and gas-kinetic (sonic gas-dynamic) evaporation regimes have been extensively 

studied [1-4]. The present paper considers heating and strong (gas-dynamic) evaporation of water droplets into the outer 

atmosphere. The vapor Mach number varies from zero to unity in accordance with the time, droplet parameters, and intensity of 

heating. 

Consider a spherical water droplet of radius R s >> 6, where 6 is the Knudsen layer thickness. At time t = 0 the 

droplet, having the temperature T = To, begins to heat up by CO2-1aser radiation at a wavelength of i = 10.6/~m. We shall 

assume that the radiation intensity I is fairly high, so that the influence of diffusive evaporation on the droplet temperature and 

radius can be neglected. The dynamics of heating and strong surface evaporation of a droplet, with the temperature dependence 

of thermophysical parameters taken into account, are described by the equations 

C(T) p(T) OT 1 0 [k(T)  r ~ o r ]  Cp r dR OT~: 3IK~Ro . 
O~'= aoR2r ~ Or -~r -+---R--d~: Or 4Rao ' (1) 

dR RoPlU 
- - - -  , 0 < r ~ l ,  
d'~ aop (T~) (2) 

with boundary conditions 

aT RoR 

OT 0 when r = 0; (3) 
Or 

Or - -  PaU [L(Ts) + Cp(T i - -  Ts)-~ U~2 J when r = (4) 

and initial conditions 

T = To, ~ when q; = O. 
R = i J (5) 

The functions C(T), p(T),  k(T), and L(T) are given in [4]. It is assumed that R s is sufficiently small (R s _< 6 #m),  so that one can 

use the approximation of uniformly distributed sources having the intensity 3IKn/(4Rs), where K n is the factor of the effective- 

ness with which a droplet of radius R s absorbs radiation. In calculations the function Kn(Rs, T) was taken in the form [4]: 
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Fig. 1. The threshold values of the intensity (1, 2) and of the nondimensionalized time of 

heating a droplet (1', 2') vs the condensation coefficient: 1, 1') R 0 = 4 ym; 2, 2') 6 #m. Ithr, 
W/cm 2. 

Fig. 2. Dependence of the quasisteady surface temperature on the condensation coefficient: 1) 

IK n = 2.104 W/cm2; 2) 3.2.104; T s, K. 

K~ = e x p  [ - -  0,2 (q/n ~ -+ • __ 1)] 1 - -  exp - -  8nxR~ 

(6) 

where n = 1.173; • = 3• f01 r2dr/T(r); x 0 = 0.073; T '  = 283 K. 

At the assigned values of the specific heat ratio for vapor 7 and for the condensation a and accommodation/3 coeffi- 

cients, the quantities Pl, T1, and U depend on T s and on the Mach number M at the outer boundary of the Knudsen layer [5] 

91 T1  
- =  ~ ,  - -  ~ '  ( 7 )  

For water/3 = 1 [6]. In this case [5], ~o = ~o(M, a, 7); ~P = ~0(M, 7). The value of a for water is not yet known with assurance. 

According to [7], 0.3 _< a _< 1 at T s = 20~ The form of the functions ~0(M, 1, 7) and ~,(M, 7) was found in [8]. For subsequent 

calculations the functions ~,(M, 1, y) and ~o(M, Y) were borrowed from [8] with minor corrections made with consideration of 

[9]. In [5], formulae are presented which at/3 = 1 and after simple transformations, allow one to obtain an expression for ~o(M, 

a, 7) in terms of ~o(M, 1, y) and v/(M, 7): 

qD(M, ~, ~) = ~qD(M, 1 , - ~ ) [ ~ §  1, y) ( 1 - -  ~) M-I f2~y~  (M, ~)1-1. (8) 

In [10] the relationship was obtained in a quasisteady approximation between the Mach number M on the Knudsen layer 

boundary and the ratio of the saturated vapor pressure Ps(Ts) at the droplet surface temperature to the outer atmosphere 

pressure far from the droplet P~: 

p~ ~ [ q g ( M , ~ , I ? ) @ ( M , , F ) ( t _ I _  y- - l ,  Mg)v/(v-1)]  -1 

P = 2 ' (9) 

P . ~ P = ,  M ~ I .  

If the temperature within a certain region in the droplet attains the values T __. Texpl, explosion of the droplet takes place 

[11]. At Poo = 1 atm, Texpl = 584 K [11]. In the calculations performed in the present work it was assumed (following [4]) that 

the droplet explodes when T > Texpl in the region with 0 < r < 0.1. 
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Fig. 3. Dependence of the nondimensionalized time of droplet heating before the beginning of 

explosive evaporation on laser radiation intensity: 1) a = 1; 2) 0.3; 3) 0.03. I, W/cm 2. 

Fig. 4. Dependence of Mach n u m b e r  Mexpl and of the relative mass of the droplet m e x p l  a t  the 

time of explosion on laser radiation intensity: 1) 1; 2) 0.3; 3) 0.03. 

The plots of the threshold values of  the intensity Ith r and of the corresponding nondimensionalized heating time Tth r VS 

a at Po~ = 1 atm, T O = 285 K, R 0 = 4 pm (curves 1, 1') and R 0 = 6 ktm (curves 2, 2') are given in Fig. 1. As is seen from the 

figure, the condensation coefficient exerts the most perceptible influence o n  Ith r and "rth r when a << 1. Note that in the present 

case the increase of R 0 by 50% almost does not have any effect on the value of rth r, whereas the value of  Ith r decreases almost 

by a factor of two. 

The results obtained are explained as follows. At I = I thr ,  by the time of droplet explosion, the temperature distribution 

is close to a quasisteady one. (Otherwise a further growth of temperature would have taken place.) In this case, the threshold 

intensity is determined from the relation [2]: 

/expl,  K n ~ 8/e v (Texpl - -  %)/1~s, lev= k (Tv), Tv = 373 K. (10) 

Figure 2 demonstrates the influence of a on the quasisteady values of T s obtained by solving the equation 

o1U [L -t- C1, (T1 -"  %)  ~ UZ/2] -~- IK, /4.  

It is seen from the figure that the change in T s becomes appreciable only when a << 1. 

The relative variation in R s by the time of explosion is insignificant. Moreover, estimates show that it is also proportion- 

al t o  Texpl  - T s (without regard for the thermal expansion of the droplet). Thus, the character of the dependence of I th  r o n  a, 

described above, is attributable to the corresponding dependence of Texpl - T s on a. It should also be noted that with R s < 5 

~m, the value of K n becomes proportional to R s. In such a c a s e ,  I th  r ~ R0-2 in accordance with Eq. (10) and in agreement with 

the results given in Fig. 1. 

In the cases considered, the time of heating the droplet center up to the temperature of explosive boiling-up without 

regard for evaporation is v I -< ~:qu, where Vqu is the time of the development of the quasisteady temperature distribution in the 

interior of the droplet. Consequently, when estimating the value of Vthr, it is necessary to take into account both ~qu and r 1 

"r thar N~ % -[- Tqu. 

According to [12], rqu --~ 0.1. Using Eq. (10), one obtains 

"t't.hr ~'~" (Texpl - -  To)l[8 (Texpl - -  T,) + 0, I. (11) 

The above numerical solution of the system of equations (1)-(9) has shown that R 0 exerts an extremely weak effect on rth r. This 

conclusion and the corresponding dependence of ~:thr on a are confirmed by estimation of Eq. (11). 
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Fig. 5. The surface temperature and the vapor Mach number vs time: a = 1, 

P~ = 1 atm, I = 1.4.106 W/cm 2, R 0 = 4/~m, texpl = 1.25 ffsec. 

In the present study, calculations of  the explosive evaporation threshold characteristics at Texpl = 590 K, a = 1, P~ = 1 

atm, T O = 285 K, and 4 _< R 0 _< 6/~m were also carried out. The calculation results show that the effect of the increase in Wexpl 

by 6 K is very small in complete agreement with Eq. (10). Such a variation in Texpl led to the rise of Ith r by 3% and to the fall of 

rth r by less than 1%. 

Figure 3 presents the plots of the nondimensionalized time of droplet  heating before the beginning of explosive 

evaporat ion r vs I at a = 1, 0.3, and 0.03 (curves 1-3), starting from the threshold values for a droplet  with R 0 = 4/~m and 

T o = 285 K at P~ = 1 atm. In Fig. 4 the corresponding plots are given for the Mach numbers M = Mexpl and for the relative 

mass of the droplet  mexpl (i.e., mass of the droplet  normalized to its initial value) at the moment of droplet  explosion. When 

a = 1 and I = Ith r = 0.99" 105 W/cm 2, 40% of the initial mass of the droplet evaporate by the time of explosion, whereas at I = 

1.4.106 W/cm 2, only 8% evaporates. The double excess of the intensity I over the threshold value leads to almost a double 

decrease in the mass which evaporates by the time of explosion. 

As is seen from Fig. 3, the value of a influences the value of "texpl only near Ith r. This is due to the fact that Texpl 

decreases rapidly with the rise in I, whereas with ~expl < 0.1 the surface evaporation has no time to appreciably influence the 

temperature of the most heated region of the droplet near the center. It follows from the results of calculations given in Fig. 4 

that the value of the condensation coefficient exerts an appreciable effect on the value of  Mexpl. It should be noted that at c~ = 
6 2 1, Mexpl = 1 starting from I = 1.29.10 W / c m ,  whereas at a = 013 and 0.03 and I = 1.29.106 W/cm 2, the evaporation is still 

subsonic and Mexpl = 0.69 and 0.35, respectively. 

Note that the values of Ith r found by the present author with the aid of the subsonic gas-dynamic scheme are close to the 

threshold values obtained at a = 1 and a = 0.036 in [3] on the basis of the diffusional-convective approximation which is valid 

for M << 1. The corresponding differences at R 0 = 6 and 4/~m do not exceed 20%. 

The nearness of the results obtained in the present work to the results of [3] means that even though Mth r lies close to 

the boundary of the region of the admissible values of Mth r in the subsonic scheme (Mth r = ~/Rs), one may use both the 

diffusional-convective approximation [3] and a much less cumbersome gas-dynamic scheme for determining the threshold 

radiation intensity and time of heating water droplets with the radii of several microns a t  P~ = 1 arm. At  the same time, for 

calculating the subsonic evaporation at radiation intensities greatly exceeding the threshold ones, the gas dynamic approximation 

should be used, as can be seen from Fig. 4. 

Figure 5 presents the plots of the surface temperature and vapor Mach number vs time up to the instant of droplet 

explosion obtained by solving the system of Eqs. (1)-(9). 

If follows from Fig. 3 that r << 1/4 when I >> Ith r a t  the stage of preexplosive evaporation. As noted above, in this 

case the spherical symmetry of the heat conduction equation does not influence the temperature field within the droplet. The 

sphericity of the problem reveals itself through the Mach number which enters into boundary condition (4) and which is 

determined with the help of Eq (9). But Eq. (9) was obtained for quasisteady evaporation. In the case of subsonic evaporation, 

this imposes a l imitation from above on the admissible values of R 0. The characteristic t ime of variation in the gas-dynamic 

parameters on the droplet  surface should be much in excess of 2R0/U 0. The value of the radius influences only the intensity of 
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volumetric sources 3IKn/(4Rs). In this case, when R s _< 5/zm, this influence weakens significantly, since K n becomes proportional 

to R s. 

CONCLUSIONS 

The paper considers a strong evaporation of a CO2-1aser-heated water aerosol droplet into the outer atmosphere. The 

plots of the threshold values of the laser radiation intensity and corresponding time of droplet heating up to its explosion against 

the condensation coefficient have been obtained and analyzed. At different values of the condensation coefficient the dependence 

of the time of droplet heating up to explosion and its mass at the time of explosion on the laser radiation intensity, starting from 

the threshold one, has been found for different values of the condensation coefficient. It is shown that both the diffusional-con- 

vective approximation and the gas-dynamic scheme can be employed when determining the threshold intensity for water droplets 

with the radii of several microns at the atmospheric pressure. At the same time, in order to calculate the pre-explosive stage of 

evaporation at the intensities greatly exceeding the threshold one, the gas-dynamic approximation should be used. 

NOTATION 

Rs, droplet radius; R 0, initial radius of droplet, R = Rs/R0; r, spherical coordinate nondimensionalized by Rs; T s, droplet 

surface temperature; To, initial temperature; T, temperature within a droplet at the point with coordinate r; C, p, k, andL,  heat 

capacity, density, thermal conductivity, and latent heat of vaporization of condensed phase; a0, thermal diffusivity at T = 273 K; 

t, time; T = ta0/R02; I, laser radiation intensity; ;t, radiation wavelength; n and • mean values of the real and imaginary parts of 

the refraction index; Pl, T1, U, and M, density, temperature, velocity, and Mach number of vapor at the Knudsen layer boundary; 

Cp, vapor heat capacity; Ps and Ps, saturated vapor density and pressure at temperature Ts; P~, outer atmosphere pressure far 

from a droplet; m, ratio of droplet mass to its initial value; Texpl  , explosive boiling-up temperature; texpl , Texpl , Mexpl, and mexpl  , 

values of t, ~, M, and m at time of droplet explosion; Ith r and 1-thr, minimum value of I and corresponding value of ~ at which 

droplet explodes. 
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